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Abstract. We have carried out numerical simulations of the three-dimensional Ising spin glass
model with first neighbour Gaussian couplings using three replicas for each sample of couplings.
We have paid special attention to the measure of two types of Binder cumulant that can be
constructed from the three possible overlaps between the replicas. We obtain new information
about the possible phase transition and perform an initial analysis of the ultrametricity issue.

1. Introduction

The problem of the existence or not of a phase transition in three-sional spin glasses is still
a subject of controversy [1]. In the last year a lot of work has appeared with the purpose
of clarifying the existence or not of the phase transition, and in the first case, characterizing
the critical exponents [2–4]. Moreover recent numerical work has shown that the low
temperature phase is as predicted by mean field [5]. Also recent analytical work by Guerra
[6] has clarified the meaning of some formulae found in the framework of the mean field
theory.

The most relevant observable in the study of these systems is the overlap between
replicas, i.e. the order parameter of the system. Up to now, all simulations have been
carried out with only two replicas for each sample of couplings. The principal novelty we
introduce in this paper is the use of three replicas.

A way to study a possible phase transition is to use the Binder cumulant. This quantity
clearly marks the change to a Gaussian situation from the non-Gaussian one. At present
this approach has not been very successful for spin glasses because at low temperatures the
results turn out to be inconclusive. One needs a lot of statistics and large lattices to obtain
the small deviation between curves corresponding to different sizes.

In this paper we study two types of Binder cumulant constructed from the three different
overlaps we can measure between the three replicas. The objective is to obtain a clearer
signal than in the case of two replica cumulant. From one cumulant, which shows a
signal very similar to the two replica ones, we have estimated the critical temperature and
the exponentν on the paramagnetic side, obtaining a good agreement with the previous
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quoted values [2]. The other cumulant presents new and interesting features and supplies
us a method of studying the possible ultrametricity of the spin glass phase as well as a
determination of the critical temperature.

2. Model, simulation and observables

The model we have studied is the three-dimensional Ising spin glass with nearest-neighbour
couplings distributed Gaussianly around zero. The Hamiltonian is

H = −
∑
〈i,j〉

Jijσiσj . (1)

As usual 〈i, j〉 denotes nearest-neighbour pairs. The lattice sizes we simulated are
L = 4, 6, 8, 10. We have used the simulated tempering method [7, 8]. The range of
temperatures studied has been [0.7, 1.3] (for L = 4 we have also made a run in the range
[0.3, 1.3]) in steps of 0.05. We have simulated 4096 different samples of couplings for
L = 4, 6 and 2048 samples forL = 8, 10, with three replicas for each sample†.

The number of sweeps depends slightly on the lattice size, but it is typically one million
for measuring, after the order of half a million iterations to estimate the free energy. The
calculations have been carried out on atower of APE100 [9] with a real performance, for
this problem, of five Gigaflops for a total time of three weeks. The errors, sample to sample,
have been computed with the jack-knife method.

As a check of the thermalization procedure we have monitored the symmetry of the
distribution of the overlaps (i.e.P(q) = P(−q)). We have also checked the two following
relations [6]:

〈q2〉2 = 2
3〈q2〉2 + 1

3〈q4〉 (2)

〈q2q ′2〉 = 1
2〈q2〉2 + 1

2〈q4〉. (3)

As usual, we denote thermal averages by〈(··)〉 and disorder averages by(··). The first
formula (2) was pointed out in a previous numerical analysis [5], and has been rigorously
demonstrated, along with (3), by Guerra [6]. Both relations are well satisfied by our data
for every value ofL and T . Their validity has been proved in the infinite volume limit,
however, it is possible that the deviations are small also for not too large volumes, as those
of the present paper.

We have focused our attention on the following Binder cumulants constructed from the
three overlaps measured for each sample of couplings:

Bqqq ≡ 〈|q12q13q23|〉
〈q2〉3/2 B ′

qqq ≡ 〈q12q13q23〉
〈q2〉3/2 (4)

and

Bq−q ≡ 〈(|q12| − |q13|)2〉
〈q23

2〉
B ′

q−q ≡ 〈(q12 − q13 sign(q23))
2〉

〈q23
2〉

(5)

whereq23 is the largest one (in absolute value). These definitions must follow the finite
size scaling relation

B# = f#(L
1/ν(T − Tc)) (6)

† Let σ , τ andµ be the three replicas that we will simulate in parallel with the same disorder. Hence, we can
define three different overlaps that we will denote{q12, q23, q13} or {q, q ′, q ′′} indiscriminately in the rest of the
paper.
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where we have used the symbol # to denote either cumulant. In the following sections we
will study, in detail, these observables.

3. Bqqq and B′
qqq

In figure 1 the values obtained from the simulations forBqqq are shown (lower curves).
We observe that at high temperatures the values for the different lattice sizes are widely
separated (the largerL the smallerBqqq). However, belowT ≈ 1.1 the curves intermingle.
In order to distinguish them clearly it would be necessary to considerably reduce the errors.
The observableB ′

qqq presents a similar behaviour. In fact, the productq12q13q23 is generally
positive (because it is favoured combinatorially even if one has three completely independent
configurations).

In the same figure, we show the values we would expect if the three overlaps satisfied
ultrametricity (upper curves). We have calculated these curves in the following way.
The probability distribution of the overlaps for each temperature and lattice size,P(q),
is obtained directly from the simulations. From it we extract the functionx(q) defined as

x(q) =
∫

0

q

dq ′P(q ′) (7)

and then we obtain the inverseq(x), which is shown in figure 2 for different temperatures
at L = 10. Supposing ultrametricity† [10]

P3(q, q ′, q ′′) = 1
2P(q)x(q)δ(q − q ′)δ(q − q ′′)

+ 1
2(P (q)P (q ′)θ(q ′ − q ′′)δ(q ′′ − q) + two permutations) (8)

the cumulant will take the value

Bqqq = 1

(
∫ 1

0 dx q2(x))3/2

(
3

2

∫ 1

0
dxq2(x)

∫ 1

x

dy q(y) + 1

2

∫ 1

0
dx xq3(x)

)
. (9)

Figure 1. Bqqq againstT : numerical data (lower curves) and supposing ultrametricity (as
explained in the text) (upper curves).

† In the appendix we will show that if ultrametricity, convexity and positivity hold then the functional form of
P3(q, q ′, q ′′) must be that of mean field for a genericP(q).
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Figure 2. q(x) for 13 different temperatures.

We can observe that the curves extracted directly from the simulations approach those
obtained supposing ultrametricity when the temperature decreases. This is in agreement
with the fact that ultrametricity could be expected at low temperatures. However, it is not a
demonstration because practically any reasonable type of relation (including independence)
between theq ’s would produce curves approaching the value 1 when the temperature goes
to zero. On the other hand, the curves from the simulations are under the value 1 (the points
for L = 4, T = 0.3–0.4 are over 1 but contain this value inside their error bars) while the
lines’ bases on ultrametricity always remain greater than 1. These results do not rule out
the possibility that the overlaps are as independent as possible for any temperature (even
when the three replicas are totally independent, the probability of the three overlaps has a
constraint given by a simple combinatorial problem); when decreasing the temperature the
behaviour of theP(q) favours theBqqq approaching 1.

The equation (9) can also be used to see what would be obtained if we assume forq(x)

a shape that could be expected in the thermodynamic limit, that is to say

q(x) =
 q0

( x

m

)r

0 < x < m

q0 otherwise.
(10)

We would obtain

Bqqq = 1

(1 − 2r
2r+1m)3/2

[
1 − 3r

2r + 1
m + 3

4

(
1 − 2r2 + 7r + 2

6r2 + 7r + 2

)
m2

]
. (11)

In figure 2 we observe that the functionq(x) obtained from the simulations is rather
similar to the supposed here withm = 1 andr descending from approximately 1 for high
temperature towards 0 as the temperature diminishes. As a test, we can compare qualitatively
the curves shown in figure 1 in the case of ultrametricity with a function of this type, and
it is seen that in fact the behaviour is similar.

We have estimated the value of the exponentν by fitting the derivative ofBqqq in the
high temperature region as

f (g, L) ≡ dBqqq

dT

∣∣∣∣
T0:Bqqq (T0)=g

= αL1/ν . (12)
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Figure 3. Probability to have ab′
qqq value for the four different sizes andT = 0.8.

Figure 4. Scaling, as a function of size, of the area of the negative part (b′
qqq < 0) in figure 3.

We have used polynomials of different orders to fitBqqq(T ) and calculated the derivatives
at several values ofBqqq . Let us remark that these derivatives are taken at different values
of T but at fixedBqqq . All the results obtained forν, for different values ofg near the
critical onegc ≡ Bqqq(Tc), are compatible within the errors, which turn out to be large.
Finally, we give an estimation ofν = 1.5(3), which is in good agreement with the value
ν = 1.7(3) reported in [2] for the±J spin glass.

As we have remarked above, the productq12q13q23 is mainly positive, but not always.
In figure 3 we show the probability distribution of

b′
qqq ≡ q12q13q23

( 1
3(q2

12 + q2
13 + q2

23))
3/2

(13)

for the differentL values atT = 0.8. Figure 4 attempts to show how the area of the
negative part behaves withL, but it is not clear if it will go to zero with increasingL or
not. If mean field holds the negative area must go to zero.



4342 D Iñiguez et al

4. Bq−q and B′
q−q

As can be seen in figure 5,Bq−q has a much clearer signal thanBqqq . We observe a
crossing of the curves for differentL in the regionT ≈ 1. At low temperatures the values
for L = 10 mask an inversion of the curves (i.e. the largerL the smallerBq−q while the
high temperature order is the other way round) which is very clear forL = 4, 6, 8, as shown
in the expanded figure 5(b). From the crossing of the curves for the larger lattices we can
estimate a critical temperature of approximatelyTc = 1.02(5). B ′

q−q also presents similar
behaviour.

These observables,Bq−q andB ′
q−q , would be zero if ultrametricity were exactly verified.

In any case, we expect violations of ultrametricity due to the finite size of our lattice as
happens in the SK model [11]. The same considerations as in the preceding section can be
made regarding the approach of theBq−q curves to zero when the temperature decreases.

A trial of estimatingν as above gives results that move systematically with the value
Bq−q fixed and then it has been discarded.

We have made a study of the probability distribution of

b ≡ (|q12| − |q13|)2

q23
2

(14)

(whereq23 is the biggest one) calculated at every single iteration, at temperatureT = 0.8.

Figure 5. (a) Bq−q versusT for the four different sizes. In (b) we plot onlyL = 4, 6, 8 and
T ∈ [0.7, 1.3].
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Figure 6. Plot of the accumulated probability for all the points (a) and only for a window near
the origin (b).

In figure 6 we show the logarithm of the probability of having a value ofb larger than a
certainb0 versusb0. Figure 7 has the same variable on the vertical axis but the logarithm of
b0 on the horizontal one. The curves for the different values ofL are hardly distinguishable.
Expanding the image in the region of smallb0 (figures 6(b) and 7(b)), we see that the upper
curves are those of smallerL corresponding to biggerBq−q , but the lowering withL is
slow and it is difficult to guess any asymptotic behaviour. Selecting, for instance, a value
of b0 = 0.05 and observing how this probability decreases withL we find approximately
a power law with a small exponent of 0.13(2). In the region of largeb0, the upper curves
correspond to largerL (in order to maintain the total probability normalized). For all the
values ofL, we observe a first region, for smallb0, where the decrease of probability can be
approximated by a power behaviour of the formb0

−α with α = 0.71(2). There is a central
plateau where it decreases exponentially as e−αb0 with α ranging from 5.8(1) forL = 4 to
5.3(1) forL = 10, while it goes to zero faster whenb0 approaches the geometrical limit of 1.

The observable

b′ ≡ (q12 − q13 sign(q23))
2

q23
2

(15)

shows a similar behaviour.
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Figure 7. The same as figure 6 but in a double log scale.

5. Conclusions

We have reported in this paper a study of the three-dimensional Ising spin glass model using
three replicas. In particular we have studied different versions of the Binder cumulant with
three replicas. We have estimated both the transition points as well as the critical exponent
ν being in good agreement with previous reported values [2].

Using one of the Binder cumulants we have begun a preliminary study of ultrametricity.
We have found that theb probability distribution goes to zero following a power law. These
results are not conclusive (the exponent is small) and we will need to simulate large lattices
using new thermalization methods (for instance parallel tempering [3]) in order to distinguish
between lack of ultrametricity and possible violations due to finite size effects.
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Appendix

In this appendix we will show that if ultrametricity holds as well as convexity and positivity
then the three-replica probability must be the mean field one.
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The most general formula, using the invariance of the Hamiltonian under the exchange
of replicas, for the probability of three replicas assuming ultrametricity is:

P3(q, q ′, q ′′) = A(q)δ(q − q ′)δ(q − q ′′) + B(q, q ′)θ(q − q ′)δ(q ′ − q ′′)
+B(q ′, q ′′)θ(q ′ − q ′′)δ(q ′′ − q) + B(q ′′, q)θ(q ′′ − q)δ(q − q ′) (A1)

with A(q) and B(q, q ′) satisfying normalization condition andB(x, y) = B(y, x).
Integratingq ′′ we obtain the probability to have two replicas:

P2(q, q ′) =
[
A(q) +

∫ ∞

q

dq ′′ B(q ′, q ′′)
]
δ(q − q ′) + B(q, q ′) (A2)

and finally the probability of one replica (P(q) that we will denote, in this appendix, as
P1(q)) is

P1(q) = A(q) +
∫ ∞

q

dq ′ B(q, q ′) +
∫ ∞

−∞
dq ′ B(q, q ′). (A3)

Now we impose the relation (demonstrated by Guerra using only positivity and
convexity)

〈q2q ′2〉 ≡
∫ ∞

−∞
dq dq ′ P2(q, q ′)q2q ′2 = 1

2〈q2〉2 + 1
2〈q4〉 (A4)

where

〈qn〉 =
∫ ∞

−∞
dq P1(q)qn.

We finally obtain the following equations:

A(q) =
∫ q

−∞
dq ′ B(q, q ′) (A5)

B(q, q ′) = 2

( ∫ ∞

−∞
dq ′′ B(q, q ′′)

)( ∫ ∞

−∞
dq ′′ B(q ′, q ′′)

)
. (A6)

Joining equations (A3) and (A5)

P1(q) = 2
∫ ∞

−∞
dq ′ B(q, q ′) (A7)

and then we recover the mean field formulae, i.e.

A(q) = 1
2x(q)P1(q) (A8)

B(q, q ′) = 1
2P1(q)P1(q

′) (A9)

with a freeP1(q). Obviously this development does not imply any particular functional
form for P1(q).

References

[1] Rieger H 1995Annual Reviews of Computational Physics II(Singapore: World Scientific) p 295
[2] Kawashima N and Young PReportcond-mat/9510009
[3] Hukushima K and Nemoto KReportcond-mat/9512035
[4] Marinari E, Parisi G and Ruiz-Lorenzo J J Work inprogress
[5] Marinari E, Parisi G, Ruiz-Lorenzo J J and Ritort F 1996Phys. Rev. Lett.76 843
[6] Guerra FInt. J. Mod. Phys.B in press
[7] Marinari E and Parisi G 1992Europhys. Lett.19 451
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